MILD: Multiple-Instance Learning via Disambiguation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-Instance Learning with Instance Selection via Dominant Sets

Multiple-instance learning (MIL) deals with learning under ambiguity, in which patterns to be classified are described by bags of instances. There has been a growing interest in the design and use of MIL algorithms as it provides a natural framework to solve a wide variety of pattern recognition problems. In this paper, we address MIL from a view that transforms the problem into a standard supe...

متن کامل

Multiple-Instance Learning via Disjunctive Programming Boosting

Learning from ambiguous training data is highly relevant in many applications. We present a new learning algorithm for classification problems where labels are associated with sets of pattern instead of individual patterns. This encompasses multiple instance learning as a special case. Our approach is based on a generalization of linear programming boosting and uses results from disjunctive pro...

متن کامل

Revisiting Multiple-Instance Learning Via Embedded Instance Selection

Multiple-Instance Learning via Embedded Instance Selection (MILES) is a recently proposed multiple-instance (MI) classification algorithm that applies a single-instance base learner to a propositionalized version of MI data. However, the original authors consider only one single-instance base learner for the algorithm — the 1-norm SVM. We present an empirical study investigating the efficacy of...

متن کامل

Multiple-Instance Learning Via Random Walk

This paper presents a decoupled two stage solution to the multiple-instance learning (MIL) problem. With a constructed affinity matrix to reflect the instance relations, a modified Random Walk on a Graph process is applied to infer the positive instances in each positive bag. This process has both a closed form solution and an efficient iterative one. Combined with the Support Vector Machine (S...

متن کامل

Multiple Instance Learning via Covariant Aggregation

We present a multiple instance learning (MIL) algorithm that learns ellipsoidal decision boundaries with arbitrary covariance. In contrast to the fixed-length feature vectors of traditional classification problems, MIL operates on unordered bags of instances. Commonly, each instance is a feature vector, and a bag is considered positive if any one of its instances is positive. In training data, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2010

ISSN: 1041-4347

DOI: 10.1109/tkde.2009.58